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Abstract A grinding process model for an automatic
grinding system with grinding force control is developed
in this paper. This grinding systemutilises an electric hand
grinder, driven by a CNC machine centre and a force
sensor for force measurement. This model includes com-
pliance of the grinding system and is initially represented
by a series of springs. The stiffness of each component is
estimated in this study and it is found that the model may
be simplified into a single spring-mass system. A corre-
sponding PID controller is designed for the purpose of
grinding force control, which calculates the appropriate
CNC spindle displacement according to the force mea-
sured by the force sensor. Computer simulation results
show that the system settling time is less than 0.25 s.

Keywords Applications grinding Æ Grinding system
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1 Introduction

It is known that force control may improve grinding
results of mould and dies [1, 2, 3, 4, 5, 6], and hence force
control has become an important procedure for grinding
and surface finishing processes. Recently, electric hand
grinders have become popular surface finishing tools of
moulds and dies. They have already been included in

automatic surface finishing systems [7, 8], in which hand
grinders are driven by CNC machine centres. However,
corresponding force control techniques for these systems
have not been developed. In this study, therefore, a
grinding process model for an automatic grinding sys-
tem using hand grinders is proposed, and a corre-
sponding PID controller has been designed. The system
is similar to that of Chen and Duffie [7], and Hsu [8], but
a force sensor is placed under the work-piece for force
measurement. The system is shown in Fig. 1. The model
proposed in this paper has been implemented in the
grinding system [9] and grinding force control experi-
ments have been performed.

Several grinding force models have been proposed. A
good summary of these models, up to the year 1992, is
given by Tönshoff et al. [10]. In these models basically
normal grinding forces are related to cutting speed,
various forms of working engagement and wheel diam-
eters. Recently Ludwick et al. [11], and Jenkins and
Kurfess [12] suggested the model

Q ¼ KpðFN � FTH ÞV ð1Þ

where Q is material removal rate, FN is normal force,
FTH is the threshold value of FN, V is the relative speed,
and Kp is a proportion constant. This model is a com-
bination of the model proposed by Hahn and Lindsay
[13], in which normal grinding force is proportional to
material removal rate, and the ‘Preston equation’ (see
[14]), which states that normal force is inversely pro-
portional to he relative speed between wheel and work-
piece. This model has been adopted by Jenkins and
Kurfess [15], [5], and Hekman and Liang [16] for
grinding force estimation. A similar model was sug-
gested by Kurfess, et al. [17], Whitney et al. [18] and
Kurfess and Whitney [19]. In a series of studies for weld
bead grinding systems, they utilised the expression

Q ¼ K1P � K2 ð2Þ

where the power P is the product of the grinding force
and the relative speed.
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All the models discussed above deal with grinding
wheels. So far there is no process model for electric hand
grinders using spherical tools. For such grinding pro-
cesses, previous results [20] show that rotation speed has
little contribution to grinding forces; hence velocity V in
Eq. 1 is not included in the present model. Also, in all
the previous models machine compliance was not con-
sidered. In this study, compliance of the grinding system
shown in Fig. 1 is included in the model.

2 Grinding process model

The grinding system shown in Fig. 1 is modelled after
the system shown in Fig. 2. In this figure, M and k1
represent mass and stiffness of the electric hand grinder
(including link and holder in Fig. 1) respectively, k2 is
stiffness of the material removal process, which is de-
fined as the ratio of normal grinding force to grinding
depth (assumed to be a constant). The symbols m and k3
denote mass and stiffness of the work-piece, and k4 is
stiffness of the force sensor. Displacements x1, x2, x3 and
x4 are measured from static equilibrium positions; hence
gravity forces may be neglected. In Fig. 2, P is the force
imposed by the CNC machine centre. Also, in the
present model, the ratio of the normal grinding force to
the grinding depth is assumed to take a constant value
k2, in reality, however, the relation between the grinding
force and the grinding depth is expected to be nonlinear.
The symbol Fd is used to represent the nonlinear term
(i.e. real grinding force = k2x2+Fd).

Springs k1, k2, and k3 are in series and they are
equivalent to a spring with the equivalent spring con-
stant K. Estimations of k1, k2, k3 and K are shown in the

appendix and it is found that the equivalent spring
constant K is dominated by k2. Generally k2 is much less
than the stiffness of the force sensor k4, hence one may
expect that k2�K. For example, the ratio k4/K for the
current system is larger than 105. With this expectation
(i.e. k4�K) in mind, it may be assumed that k4 fi ¥ and
x4 fi 0. Then the model shown in Fig. 2 may be sim-
plified to the one shown in Fig. 3.

Eqation of motion of the system is

P tð Þ þ Fd tð Þ � F tð Þ ¼ M€x1 ð3Þ

where

F tð Þ ¼ Kx1 ð4Þ

is the spring force. Differentiating both sides of Eq. 4,
one may obtain

€F tð Þ ¼ K€x1 ð5Þ

Substituting Eq. 5 into Eq. 3, one gets

P tð Þ þ Fd tð Þ � F tð Þ ¼ M
K

€F tð Þ ð6Þ

Fig. 1 Grinding system

Fig. 2 Modelling of the grinding system

Fig. 3 Simplified model
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Taking the Laplace transform for both sides of Eq. 6,
also assuming zero initial conditions, one may obtain

P sð Þ þ Fd sð Þ � F sð Þ ¼ Ms2

K
F sð Þ ð7Þ

From this equation, the block diagram of the process
model may be drawn, as shown in Fig. 4.

In this diagram, the input P(s) is the force applied by
CNC machine centre, the disturbance Fd(s) is the non-
linear grinding force defined above, the output F(s) is the
force measured by the force sensor. The transfer function
of the block diagram is defined by GP(S)=F(S)/P(S).
Using Eq. 7, also assuming Fd(s)=0 one may obtain

GP Sð Þ ¼ F Sð Þ
P Sð Þ ¼

1
M
K s2 þ 1

ð8Þ

3 Controller design

In this study, a PID controller is utilised and is rep-
resented as Gc Sð Þ ¼ Kp þ Ki

S þ KdS. The block diagram

of the grinding system is shown in Fig. 5. In this fig-
ure, F*(S) is the input force command, F(s) is the value
measured by the force sensor, and e(S)=F*(s)�F(S) is
error. In order to investigate if the system may be
controlled under the steady state condition, the dis-
turbance Fd (s) is set to zero. From Fig. 5 and Eq. 8
one may show that the system transfer function G(s) in
Fig. 5 is given by

G sð Þ ¼ F sð Þ
F � sð Þ ¼

Kds2 þ Kpsþ Ki
M
K s3 þ Kds2 þ 1þ Kp

� �
sþ Ki

ð9Þ

In steady state, s fi 0, from Eq. 9 it is assumed that

lim
s!0

F sð Þ
F � sð Þ ¼

Ki

Ki
¼ 1 ð10Þ

This means F(s)=F*(s), hence the system may be
controlled in the steady state.

Since F(t)=Kx1(t), differentiating both sides of this
expression, one finds

_F tð Þ ¼ K _x1 ¼ KV tð Þ ð11Þ

where V(t) is velocity of the spindle. Taking the Laplace
transform of this equation, one finds

SF Sð Þ ¼ KSx1 Sð Þ ¼ KV Sð Þ ð12Þ

Hence the term KdSF(S) in Fig. 5 may be replaced by
the expression KdKV. Also, SF*(S)=0 for the condition
of constant grinding force, the block diagram shown in
Fig. 5 may be replaced by the diagram shown in Fig. 6.

The transfer function of this diagram may be shown
to be

Fig. 5 Grinding system block
diagram

Fig. 6 Modified grinding
system block diagram

Fig. 4 Block diagram of the process
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G sð Þ ¼ F sð Þ
F � sð Þ ¼

KpKsþ KiK
Ms3 þ KdKs2 þ KpK þ K

� �
sþ KiK

ð13Þ

The numerator polynomial in the current transfer
function is one degree less than the transfer function
defined by Eq. 9, which means the current transfer
function has less zero point and also less influence upon
a pole. Also, in the block diagram of Fig. 5 the error e(s)
is differentiated once, implying that the induced noise
will be amplified, and this does not happen in the current
block diagram. Therefore in the following discussion,
the block diagram shown in Fig. 6 is used.

In order to determine controller gains, the first
obvious point is that the denominator of Eq. 13 is a
polynomial of the third order, and can be written in the
form

g Sð Þ � MS3 þ KdKS2 þ KpK þ K
� �

S þ KiK

¼ S þ að Þ S þ aþ jbð Þ S þ a� jbð Þ ð14Þ

Since it is relatively difficult to analyse a third order
system, the purpose now is to approximate this system
with a second order one, by assuming the two complex
roots are dominant roots. Requiring that percent over-
shoot of the second order system does not exceed 3%,
the following relation may be obtained [21]

0:03 ¼ e�pf
� ffiffiffiffiffiffiffiffi

1�f2
p

ð15Þ

which implies pf
. ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� f2
p

¼ 3:057, or f=0.75. As the
first attempt to determine system gains, settling time TS

is arbitrarily set to 0.5 s. This means [21]

TS ¼
4

fxn
¼ 0:5 s ð16Þ

thus fxn=8, and xn=10.67 rad/s.
The angle h (see Fig. 7) take the value cos�1f or 41.4�.

Therefore the complex poles of the characteristic equa-
tion (i.e. the equation g(S)=0, see Eq. 14) are
S=�8±j7.05. The idea is to keep the third pole away
from these two complex poles. The value S=�15 is
arbitrarily chosen, hence Eq. 14 can be written in the
form

g Sð Þ ¼ S3 þ 31S2 þ 353:7S þ 1705:5 ¼ 0 ð17Þ

Comparing coefficients of the last equations to the
denominator of Eq. 13, the following relations are ob-
tained

KdK
M
¼ 31 ð18aÞ

KpK þ K
M

¼ 353:7 ð18bÞ

and

KiK
M
¼ 1705:5 ð18cÞ

The value of K is estimated in the appendix to be
K=8.74·103(N/m), and mass of the hand grinder (with
holder and link) is M=5 kg, substituting these values
into Eqs. 18a, 18b, 18c, Kd=0.0178, Kd=�0.797, and
Ki=0.98 may be obtained. Since system gains cannot be
negative, a second trial, with new values of settling time
Ts and natural frequency xn, is necessary.

For the second trial, the settling time is assumed to be
0.25 s, i.e. TS ¼ 4= fxnð Þ ¼ 0:25 swhich means xn ¼ 21:3,
and fxn ¼ 16. Following the same steps as in the first
trial, the two complex poles may be determined to be
S=�16±j14.1. Now assuming that the third pole is at
the point S=�45, then the characteristic equation is

S3 þ 77S2 þ 1895S þ 20466 ¼ 0 ð19Þ

and after comparing corresponding coefficients, one
finds

KdK
M
¼ 77 ð20aÞ

KpK þ K
M

¼ 1895 ð20bÞ

and

KiK
M
¼ 20466 ð20cÞ

which means Kd=0.0443, KP=0.0891, and Ki=11.762.
The zero of the system is the root of the equation in

the numerator of Eq. 13, i.e. the equation

KpKS þ KiK ¼ 0 ð21Þ

Substituting the above values into this equation, one
may find that the zero is the point S=�132.0. Hence the
transfer function defined by Eq. 13 may be written in the
form

G Sð Þ ¼ F Sð Þ
F � Sð Þ ¼

KpK=Mð Þ SþKi=KP Mð Þ
S3þ77S2þ1895Sþ20466

¼ 155:034 Sþ132ð Þ
Sþ45ð Þ Sþ16þj14:1ð Þ Sþ16�j14:1ð Þ

ð22Þ

Note that in steady state, G(S) approaches 1 as
S fi 0.Fig. 7 Root locus of the characteristic equation
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4 Simulation results and discussions

The system response may be obtained using the com-
mercial software Matlab. In the simulation procedure,
the spring constant K=8.74·103(N/m), mass of the
hand grinder (with holder and link) M=5 kg, system
gains are Kd=0.004, Kp=0.089 and Ki=11.762. The
sampling time is chosen to be 0.001 s.

The loop transfer function of block diagram shown in
Fig. 6 is

L Sð Þ ¼ KpKS þ KiK
Ms3 þ KdKS2 þ KS

ð23Þ

With the system gains just obtained, the root-locus
diagram corresponding to loop transfer function 23 may
be drawn and is shown in Fig. 8. The three poles of
Eq. 22 are shown in this diagram. It can seen that both
the zero and the third pole are much farther apart from
the imaginary axis than the dominant complex roots,
making them have negligible influence on the system,
hence the system may be approximated by a second
order one.

With the gain values just obtained, the Bode diagram
for the transfer function G(s) defined by Eq. 13 is drawn
(the Bode diagram of the process model without con-
trollers is given in Fig. 9) and is shown in Fig. 10.
Comparing this diagram to the Bode diagram of the
process model without controllers, (i.e. Fig. 9) one may
find that the resonance has been greatly reduced. Also,
while the phase margin shown in Fig. 9 is approximately
180�, which corresponds to an unstable state, the phase
angle shown in Fig. 10 is approximately 45�.

Due to the fact that the grinding force control system
takes step input, step responses for the grinding process
with and without controller are compared. Figure 11
shows step responses without controller, and Fig. 12
shows step response with the controller just designed has

Fig. 8 Root-locus diagram of open loop system

Fig. 9 Bode diagram of the grinding process

Fig. 10 Bode diagram of the grinding process with controller

Fig. 11 Step response of the grinding process
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been imposed. In the system without controller, grinding
force oscillates with no steady state and in the system
with force control; the settling time is less than 0.25 s
with a percent overshoot of less than 3%. These system
gains (i.e. Kd=0.044, KP=0.089, and Ki=11.762), have
been utilised in the automatic grinding system with force
control; results show that surface roughness may be re-
duced [9].

5 Conclusions

In this study, a grinding process model for the force
control system utilises a CNC machine centre, an electric
hand grinder and a force sensor has been proposed. This
force control system is represented by a spring-mass
system and according to estimated stiffness of each
component, the spring-mass system may be further
simplified. A PID controller base on the simplified sys-
tem has been designed. Controller gains are estimated by
using the commercial software Matlab. Estimation re-
sults show that a settling time of less than 0.25 s and a
percent overshoot of less than 3% may be obtained.

Acknowledgements The authors gratefully acknowledge that this
study was supported by the National Science Council of ROC
under grant no. NSC 89-2218-E032–030.

Appendix: Estimations of stiffness constants

Stiffness of hand grinder (with link and holder): k1

In Fig. 13, segment AB represents the link (see Fig. 1)
which has a length a and makes an angle h with the
Z-axis. The electric hand grinder is presented by segment
BC which is normal to segment AB and the length of

which is b. As the normal grinding force P is applied,
the corresponding displacement of member ABC (i.e. the
combined parts of link, holder, and hand grinder) at the
point C is DZ, which is to be estimated in two steps.
First, segment AB is tightly fixed to the spindle and may
be represented by a cantilever beam, as shown in Fig. 14.
The angle at point B due to the force Psinh and the
moment Pbcosh is

hb ¼
Pba cos h

EaIa
� Pa2 sin h

2EaIa
ð24Þ

where Ea and Ia are modulus of elasticity and area
moment of inertia of the segment AB, respectively.
Secondly, segment BC is also modelled by a cantilever
beam but it has an initial inclination angle hb, as shown
in Fig. 15. The deflection at C of this beam due to the
load is given by

CC0 ¼ Pb3 cos h
3EbIb

ð25Þ

Fig. 13 Simplified model of hand grinder (with holder) for
calculating k1

Fig. 14 Link AB is modelled by a cantilever beam

Fig. 12 Step response of the grinding process with controller
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where Eb and Ib denote modulus of elasticity and area
moment of inertia of the segment BC respectively. The
total displacement at C in the direction of Z¢ may be
approximated by the relation

dc ¼ CC0 þ bhb ¼
Pb3 cos h
3EbIb

þ Pab 2b cos h� a sin hð Þ
2EaIa

ð26Þ

and thus the displacement at C in the Z direction is

DZ ¼ dc cos h ¼ Pb3 cos2 h
3EbIb

þ Pab cos h 2b cos h� a sin hð Þ
2EaIa

ð27Þ

Link AB is made of stainless steel with the modulus
of elasticity Ea=210 GPa. The hand grinder is a com-
bination of stainless steel and aluminum alloy. The va-
lue Eb=70 GPa is used and later one will see that any
value between 70 Gpa (aluminum) and 210 GPa
(steel) may also be used and has very little effect on the
final result. Diameters of segment AB and BC are

da=0.036 m and db=0.026 m respectively. Using the
relation I ¼ pd4

�
64, one may determine Ia=

8.2 · 10�8 m and Ib=2.2 · 10�8 m respectively. Substi-
tuting these values, together with the lengths a=0.13 m,
b=0.195 m and the angle h=30� into Eq. 27 one may
obtain Z=1.38 · 10�6P. Then the stiffness of the first
spring is k1=P/DZ=7.25 · 105 N/m.

Stiffness of material removal process: k2

Grinding force for a certain grinding depth may be
obtained by using the force sensor shown in Fig. 1
(Kistler_5295A). As feed rate is 20 mm/min, rotation
speed is 20,000 rpm, and tool diameter is 9.5 mm, nor-
mal grinding forces are measured with various grinding
depths. Average grinding forces versus grinding depths
are plotted in Fig. 16. The relation is roughly linear and
the slope is taken to be the stiffness k2, hence approxi-
mately k2=8.84 · 103 N/m.

Stiffness of work-piece: k3

Stiffness of the work-piece may be estimated by using the
finite element method. For example, specimens used by
Chen [9] have the size 40mm · 40mm · 15 mm, and are
made of SKD61 steel. Using the commercial software
I-DEAS version 7.0, the displacement at the centre as a
force 100 N is applied is calculated to be 1.5·10-7 m.
Hence the stiffness k3=6.67 · 108 N/m.

Equivalent stiffness K for the series
of springs k1, k2, and k3

The equivalent stiffness K is given by

1

K
¼ 1

k1
þ 1

k2
þ 1

k3
ð28Þ

Substituting values of k1,k2, and k3 into Eq. 28, it is
found that K=8.74 · 103 N/m. One may notice that
both k1, and k3 are much larger than k2, hence the right-
hand side of Eq. 28 and also the equivalent stiffness K,
are dominated by k2.

Stiffness of the force sensor: k4

The operation manual of the force sensor (Kis-
tler_5295A) gives the value k4=2.6 · 109 N/m.
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